

Calorimeter Electronics R&D

E.J. Mannel sPHENIX C&S Review

Design Drivers- I

- Compact Electronics- limited space on detector
- Common Electronics Design
 - Reduce design cost and time
 - Use off the shelf components
 - No custom ASICs
- Optical Sensors
 - Immune to magnetic fields
 - Compact
 - High gain

Design Drivers- II

- Direct digitization of signals
 - 40 BCO latency for trigger
 - Multi-event buffering
 - Reduced demands on analog section
- Compatible with PHENIX DAQ
 - High rate: 15kHz L1 trigger rate

Design Specifications

- Optical Sensors:
 - Dynamic Range: 10⁴
 - Gain: 10⁵
 - Photon Detection Efficiency: 25%
- Analog Front End:
 - Signal-to-Noise: 10:1
 - Peaking time: 30 nSec
 - Gain: 100 mV/pC
- Digitizer:
 - Resolution 14 bits (12 bit effective)
 - Maximum sampling frequency: 65 MHz
 - Latency (L1 Trigger): 40 Beam Crossings (BCO)
 - Multi-event buffering: 4 Events
 - L1 Trigger rate: 15 KHz

Calorimeter Electronics Overview

Calorimeter Electronics: Analog

- Solid state optical sensors
 - SiPMs are the preferred sensor
 - Reference design based on Hamamatsu \$12572-015P
 - 3x3 mm²
 - 15 μm pixel size, 40K pixels
 - Gain: 2x10⁵
 - EMCal: 98304, HCal: 15360
- Common front end analog electronics
 - On Detector
 - Low power
 - Shaper/Driver 30nSec peaking time
 - More details by S. Boose

Calorimeter Electronics: Digital

- Located off (but near) detector
 - Reduced space constraints
 - Reduced cooling complexity
 - Easier access for installation and maintenance
 - Reduced magnetic constraints: e.g. allows use of DC-DC converters, inductors.
 - Need to pay attention to noise issues
- Continuous digitization of signals
 - 6x Beam crossing (BCO) frequency
 - 14 Bit ADC
 - Digital 40 BCO latency for L1 Trigger
 - Multi-event buffering
 - Provides trigger primitives
- More details by C.Y. Chi

Optical Sensors: Temperature Effects

- SiPMs have strong temperature dependence : 2%-4%/°C
- Local monitoring of temperature
- Feed back loop to correct for temperature variations

Radiation Tolerance Issues

Expected Levels

- Total Ionizing Radiation:
 - < 10kRad per Run
 - Highest rates are in 510 GeV/c p-p running
 - Based on measurements in 1008
- Neutron Fluences
 - 2-3 10¹⁰ n/cm² per Run Year
 - Measurements in 1008
 - M.C. Simulations in STAR

SiPM Neutron Radiation Damage

- SiPM susceptible to damage due to neutron radiation
- Results in increased leakage current
 - Increased noise
 - Decrease in PDE
 - Increased power
- Studies on neutron damage in progress

SiPM Radiation Studies

- PHENIX IR: Run 14/15
 - Neutron fluxes similar to what is expected for sPHENIX 2-3 x 10¹⁰ n/cm²
 - Measure change in leakage current
 - Measure gain using LEDs
- LANCE (Los Alamos) and LENS (Indiana University) Studies
 - Much higher fluences- Equivalent to multi-years of running in a few days 10¹¹ – 10¹³ n/cm²
 - Study device characteristics pre/ post irradiation
- STAR is also doing studies

Cable Routing

- Integral part of electrical/mechanical design
 - EMCal has dense cable plant
 - Inner HCal is not accessible once installed
 - Has to address cooling
 - Making dummy
 HCal/EMCal sectors
 to evaluate design
 - Inner ½ sector HCal complete
 - EMCal sector in progress
 - Outer HCal being planned

Prototypes

- Early test beam: T-1044 (March 2013)
 - Optical Sensors: 25 μm² SiPMs
 - First generation preamps
 - First generation controller
 - HBD Digitizers (48 channels/12 bit ADC)
- Prototype V1: T-1044 Follow up 1 (April 2016)
 - Optical Sensors: 15 μm² SiPMs
 - Second generation preamps
 - Second generation controllers
 - Second generation digitizers (64 channels/14 bit ADC)
- Prototype V2: Fall 2016/Winter 2017: Dates to be scheduled
- Preproduction Prototype

Future Radiation Studies

- Studies at 1008- PHENIX IR
 - SiPM performance
 - Measure gain stability
 - Leakage current
 - Analog component evaluation
 - Use first generation prototypes
 - Look for component failures
 - Making plans for RUN-16 (Jan 2016)
- Studies at LANSCE- Los Alamos
 - SiPMs
 - Front end analog section
 - Neutron fluences corresponding to multiple years of sPHENIX running
 - Next run opportunity Jan/Feb 2016

Labor Profile

SPHENIX CALEL LABOR PROFILE

Cost Estimates

Based on:

- Number of modules required in reference design.
- Cost of R&D modules scaled to production quantities where possible
- Cost of similar or past produced modules if there is not yet an R&D version.
- Budgetary estimates for large cost items: SiPMs, FPGAs, ADCs, Signal Cables...
- Fabrication and assembly commercially done, only final assembly done in house.
- Continuing to refine as designs become more detailed.

Cost Profile

SPHENIX CALEL BUDGET

Issues and Concerns

- Neutron radiation damage: Continuing studies in progress
- Gain stability: Plan developed and being tested
- Radiation tolerance of devices: Will qualify all devices in "high" radiation areas.
- Signal Integrity (e.g.: cross talk, noise levels): On going studies in progress
- Ground Plan: Preliminary plan developed
- Cable Routing: Using mockups to finalize plan
- Prototyping: Multiple tests scheduled: Lab, Test Beam...
- Labor: Core group in place, BNL/Columbia, for design and fabrication, but will need to work with collaborators to finalize production testing stage.